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What follows is an attempt to examine and clarify some of the notions involved in applying the term open to problem-solving.

Problem-solving

Taken at its simplest, problem solving seems to have two crucial features. The first is intent. A problem is not a problem if you don’t want to solve it. The second feature is the idea of an obstacle. If you know what to do, then there’s no problem. To what extent a particular task is a problem therefore depends on the degree of engagement of the student, and on her previous experience. For example, separating salt from sand is likely to be a problem for many primary school children, but one hopes that for their teachers, it isn’t.

There is now a growing body of evidence that an understanding of problem-solving cannot be based on an analysis of the problem alone, or even of the problem-content, the problem-context and the student as separate, independent collections of variables. This is manifest in the notions of idea analysis (Lesh, 1985), belief systems (Schoenfeld 1985) situational analysis (Depuis, 1985; Balacheff, 1986), and perhaps most significantly in activity theory (Christiansen and Walther, 1986; Mellin-Olsen, 1987).

Bauersfeld (1979) has pointed to the differences that often exist between the matter intended, the matter taught and the matter learned. What is becoming clear is that the relationship between these three is determined by social and cultural factors as much as by cognitive factors. Any attempt to understand students’ problem-solving behaviour must therefore acknowledge that this behaviour occurs in a social and cultural setting.

Schoenfeld (1985) has reported (as have many others) that students’ attempt at tasks are often influenced by their beliefs. If they think that the teacher has a particular answer in mind, the students will often not be thinking mathematically or scientifically, but will, instead, be trying to ‘guess what’s in teacher’s head’. Many students build up a pattern of belief that school problems can be solved in five minutes or less. If they then fail to solve a particular problem in five minutes, they believe that they must be on the wrong track, so they give up. This kind of socially-induced behaviour can be seen in most classrooms most days.

Task and activity

The relationship between the task, which is set by the teacher, and the activity in which the student engages is clearly far from straightforward. Christiansen and Walther (1986) explore this using Activity Theory, a theory that has been developed in the Soviet Union by, amongst others, Leont’ev (1975) and Galperin (1980). Burton (1980), on the other hand characterises the important distinction as being between puzzles where the rationale for solving is instrumental and problems where the rationale is significant. What is repeatedly stressed is the importance of the student making the task her own.

The reason that I see this ‘making the problem one’s own’ as being so important is not because I believe that it will yield substantially greater cognitive achievement, although this may happen. Rather it is because I feel it will lead to a reduction of the schism between the student’s personal knowledge and her school knowledge, so that school scripts (Schank and Ableson, 1977) are less embedded (in the sense used by Donaldson, 1978) in, and therefore tied to, school contexts. This would mean that school learning would be more available for helping to solve the student’s own real-life problems (Boaler, 1997).

The ease with which a student makes a task her own, in other words how she moves from task to activity, or from puzzle to problem, is, I believe, to a large extent dependent on the role that the student has played in formulating the problem, and also in deciding what counts as a solution to, or a resolution of, the problem.

It is in connection with these (largely non-cognitive) factors that the idea of an openness as applied to problem solving activity becomes important.

It therefore seems useful to characterise problems according to the degree of choice left to the student in:

1
the posing of the problem, 

2
what counts as a solution, and 

3
the means for its solution.

If the means for solution were defined, then we would have a task better described as an exercise than a problem, so in all that follows, we assume that the means of solution is not defined. Under these conditions, then, we can envisage four kinds of task.

given defined, goal defined

given defined, goal undefined

given undefined, goal defined

given undefined, goal undefined

Examples of these might be

make a silk purse out of a sow’s ear; 

make something useful out of a sow’s ear; 

make a silk purse out of some part of a pig; 

make something useful out of some part of a pig.

(Reitmann, 1965, quoted in Mayer, 1983)

If we want to stop students trying to guess what’s in teacher’s head, then we must get away from the notion that there is an answer, already known to the teacher, but not to the student. This notion is strengthened if

1
the nature of the given state is undefined (open-beginning); or if

2
the nature of the goal state is undefined (open-end).

Tasks

When a teacher attempts to construct a task for use in the classroom, there is clearly some intention that the core of the task will be relevant to the syllabus (syllabus is used here in its widest sense; perhaps the meaning is closer to the epistemology) being followed. This core however, is often rather abstract, and metaphors are usually employed by teachers to capitalise on the existing cognitive equipment or scripts that students have so that there is a convergence by the students on the activity intended.

Let us suppose that we want a student to undertake an exploration of a particular mathematical situation. The mathematical situation we have in mind is as follows.

On a square lattice (ie on square centimetre dotty paper), for a given rectangle, what is the minimum number of lattice points we must mark with a cross so that no lattice point is more than 1 unit from a cross?

This is the mathematical task intended, and a search for the solution to this problem is the activity intended.

Now we might phrase the problem exactly in this way, and give it to students. In this case, there will be some students who can understand what the problem is asking and get to work straight away. However, there will be others, who would be able to engage in the activity, but for the fact that they don t understand it! For some of these students, the problem will become more accessible if it is located in a familiar context. For example:

This problem concerns a strange chess piece - a disabled rook - moving over a rectangular chessboard.. It can move in the same way as a rook, (ie left and right, forwards and backwards, but not diagonally) except that it can only move one square in each direction. For a given rectangular chessboard, how many rooks do you need to make sure that each square of the board is attacked (or occupied!).

The mathematical problem at the core of this task is the same as before, but it is presented in a metaphorical form. For students familiar with chess, this metaphor will be more accessible. However, if the student has no knowledge of chess, this implementation is attempting to capitalise on ‘scripts’ that the student doesn’t have, and is in fact is likely to hinder more than help. Other variations may however, be more successful.

Imagine a city whose streets form a square grid, the side of each square being l00m. A policeman stands at a street-corner. He can spot a suspicious person at l00m, so he can watch 400m of street. A single block needs 2 policemen to watch it. 2 blocks will need 3 policemen. What about 3 blocks in a row? 4 blocks in a row? and so on. . .

(SMILE, 1990)

This implementation gives a task that is more accessible (open?) in that the scripts necessary to engage with this formulation are more widely shared, but, unfortunately the metaphor is not a good one. There are interpretations consistent with the real-world situation depicted that are not isomorphic to the intended activity. For many students, the idea that someone can see exactly 100 metres, but not 110 metres is plainly absurd. Accordingly, they produce optimal arrangements that accord more with their common sense than with the teacher’s intention. In particular, this kind of response may be more prevalent in female than male students (Brown, 1984; Gilligan, 1982)

For other students, the following implementation may lead to greater convergence on the intended activity.

Imagine a city whose streets form a square grid, the size of each square being l00m. The Fire Department has hoses that are 100 metres long, so a single block needs 2 hydrants to protect it. 2 blocks will need 3 hydrants. What about 3 blocks in a row? 4 blocks in a row? and so on. . .

Investigate further.

(GAIM, 1988)

In all the implementations given so far, the given state and the goal state are reasonably clearly defined. The independent variables are (implicitly) defined as the width and breadth of the rectangle, and the dependent variable is (again implicitly) defined as the number of crosses, policemen, or hydrants required. The activity consists of finding the nature of the relationship between the independent and dependent variables.

However, when this is used with some students (often termed divergent thinkers), they display the capability to override the implicit intentions of the teacher and manage to ‘do their own thing’. Presented with the tasks above, they might instead choose to explore the number of different optimal arrangements that might exist for a given rectangle. I do not mean to imply that there are two sorts of thinkers, divergent and convergent. Rather, I believe that different students have different thinking styles with different amounts of what might be termed ‘potential for divergence’. Given the implementations above, quite a high degree of potential for divergence would be required by the student to deviate from the path planned for her by the teacher, and therefore, it is likely that very few students would so deviate.

However, if the task were amended to read something like

Imagine a city whose streets form a square grid, the side of each square being l00m and the Fire Department has hoses that are 100 metres long.

How should the Fire Department arrange its hydrants?

This obviously will allow a far greater variety of interpretations by the students, some of which the teacher will regard as useful mathematical directions, and some that she will not, but it does suggest a definition of the term open when applied to tasks:

Task A is more open than task B if


all the acceptable interpretations of B are acceptable interpretations of A, and


there are acceptable interpretations of A that are not acceptable interpretations of B.

This definition leaves undefined the definition of ‘acceptable’; in practice this must mean acceptable to the teacher in the classroom. It is the teacher’s reaction to students attempts that moulds the students’ own epistemology of the subject. It is the teacher who says what goes.

It should be noted that in applying the term open to tasks, and how the problem is interpreted by students, we are not talking about open-endedness, but rather about open-beginningedness (!?). It is the nature of the given state that is undefined.

Solutions

As indicated above, the reasons for using open tasks are:

•
to give students experience of formulating specific problems from rather vague problem-situations;

•
to give students a more appropriate epistemology;

•
to allow students scope for divergence;

•
to convince the student that they shouldn’t be trying to guess what’s in teacher’s head.

These aims would immediately be negated if the students believed that the teacher had a particular end-point in mind. This happens routinely in many classrooms where teachers claim that what they are interested in is the students’ own ideas and intuitions, but nevertheless, still apply the teacher’s criteria for assessment. The activity may be student-centred, but the assessment isn’t. In fact teachers employ an invisible pedagogy (Bernstein, 1975); they won’t tell students what investigations are, but assess students efforts by reference to their own (ie the teacher’s) model.

Clearly then, the aim of integrating personal and school knowledge requires that what counts as a resolution of the problem interpreted must be left to the student.

We can therefore return to our fourfold classification of problems, and adapt it for tasks. Since tasks that can be interpreted in many different ways are unlikely to yield similar solutions, we can discount the possibility that a task is open-beginninged, but not open-ended. To summarise:

Task A is more open than task B if:


all the acceptable interpretations of B are acceptable interpretations of A, and


there are acceptable interpretations of A that are not acceptable interpretations of B.

Task A is more open-ended than task B if:


all the acceptable solutions of B are acceptable solutions of A, and


there are acceptable solutions of A that are not acceptable solutions of B.
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